Help
RSS
API
Feed
Maltego
Contact
Domain > bvans.net
×
Welcome!
Right click nodes and scroll the mouse to navigate the graph.
×
More information on this domain is in
AlienVault OTX
Is this malicious?
Yes
No
Whois
Property
Value
NameServer
NS2.LAUTRE.NET
Created
2008-10-09 00:00:00
Changed
2016-09-11 00:00:00
Expires
2018-10-09 00:00:00
Registrar
GANDI SAS
DNS Resolutions
Date
IP Address
2025-01-22
80.67.160.70
(
ClassC
)
Port 80
HTTP/1.1 200 OKDate: Wed, 22 Jan 2025 11:04:32 GMTContent-Type: text/htmlContent-Length: 8074Connection: keep-aliveLast-Modified: Tue, 20 Dec 2022 17:18:09 GMTETag: 1f8a-5f0459eb926adAccept-Ranges: bytesVary: Accept-EncodingX-Backend-Server: 10.0.0.42:80 !DOCTYPE html PUBLIC -//W3C//DTD XHTML 1.0 Strict//EN http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd> html xmlnshttp://www.w3.org/1999/xhtml langen xml:langen>head>meta http-equivContent-Type contenttext/html; charsetutf-8 />title>Bart Van Steirteghem/title>style typetext/css>body{font-family:Tahoma, Geneva, sans-serif; font-size:.8em; }a:link { color: #000000; text-decoration:none;}a:visited { color: #000000;text-decoration:none; }a:hover { color: #000000; text-decoration:underline;}a:active { color: #000000; text-decoration:underline;}/style>/head>body>title>Bart Van Steirteghem/title>b>Bart Van Steirteghem/b>br/>a hrefhttps://www.math.fau.de/>Department Mathematik/a>br/>FAU Erlangen-Nürnbergbr/>Cauerstr. 11, D-91058 Erlangenbr/>Phone (+49) 9131 85-67015br/>Office 01.316br/>bartvs at math dot fau dot de!--table border0>tbody>tr>td width350 nowrap>b>Bart Van Steirteghem/b>/td>td width350 nowrap> /td>/tr>tr>td>Department of Mathematicsbr/>a hrefhttp://www.mec.cuny.edu/>Medgar Evers College/a>, a hrefhttp://www.cuny.edu/>CUNY/a>br/>1650 Bedford Ave, Brooklyn NY 11225, USAbr/>Phone (+1)718-270-6429br/>Office L-05-V in AB1br/>bartvs at mec dot cuny dot edu/td>td>a hrefhttp://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Doctoral-Programs/Mathematics/Faculty-Bios/Bart-Van-Steirteghem>Doctoral Faculty/a>br/>a hrefhttp://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Doctoral-Programs/Mathematics>Mathematics Program/a>br/>a hrefhttp://www.gc.cuny.edu/>The Graduate Center/a>, a hrefhttp://www.cuny.edu/>CUNY/a>br/>365 Fifth Avenue, New York, NY 10016, USA br/>Phone (+1)212-817-8557br/>Office 4302/td> td>Department Mathematik (LS Knop)br/>Lehrstuhl für Algebrabr/>FAU Erlangen-Nürnbergbr/>Cauerstr. 11, D-91058 Erlangenbr/>Phone (+49) 9131 85-67022br/>Office 01.322br/>bartvs at math dot fau dot de/tr>/tbody>/table>p>b>Bart Van Steirteghem/b>br/>Department of Mathematicsbr/>a hrefhttp://www.mec.cuny.edu/>Medgar Evers College/a>, a hrefhttp://www.cuny.edu/>City University of New York/a>br/>1650 Bedford Ave, Brooklyn NY 11225, USAbr/>Phone (+1)718-270-6429br/>Office L-05-V in AB1br/>bartvs at mec dot cuny dot edu/p>-->p>a hrefhttp://bvans.net/cv.html>Brief CV/a>/p>!-- p>b>Current teaching/b>br/>Mathematik für Physikstudierende 3 (Erlangen)-->p>b>Papers/b>br/>i>Quasi-Hamiltonian model spaces/I> a hrefhttps://arxiv.org/abs/1901.00634>arXiv/a> (with Kay Paulus)br/>i>Multiplicity free U(2)-actions and triangles/I> a hrefhttps://arxiv.org/abs/2208.02099>arXiv/a> (with a hrefhttps://www.uni-marburg.de/de/fb12/kooperationen/diffgeoana/prof-dr-oliver-goertsches>Oliver Goertsches/a> and Nikolas Wardenski)br/>i>Momentum polytopes of projective spherical varieties and related Kähler geometry/I> a hrefhttps://doi.org/10.1007/s00029-020-0549-9>article/a>, a hrefhttps://arxiv.org/abs/1809.08171>arXiv/a>, a hrefhttps://rdcu.be/b3rfl>view-only/a> (with a hrefhttps://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/transformationsgruppen/cupit.html>Stéphanie Cupit-Foutou/a> and a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Selecta Mathematica, New Series 26 (2020), 27.br/>i>Combinatorial characterization of the weight monoids of smooth affine spherical varieties/i> a hrefhttps://doi.org/10.1090/tran/7785 >article/a>, a hrefhttps://arxiv.org/abs/1510.04266>arXiv/a> (with a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Transactions of the American Mathematical Society 372 (2019), 2875-2919.br/>i>On some families of smooth affine spherical varieties of full rank/i> a hrefhttps://doi.org/10.1007/s10114-018-7244-1>article/a>, a hrefhttps://arxiv.org/abs/1705.05357>arXiv/a> (with Kay Paulus and a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Acta Mathematica Sinica, English Series 34 (2018), 563-596.br/>i>Nilpotent matrices having a given Jordan type as maximum commuting nilpotent orbit/i> a href https://doi.org/10.1016/j.laa.2018.02.007>article/a>, a hrefhttps://arxiv.org/abs/1409.2192>arXiv/a> (with a hrefhttp://www.northeastern.edu/iarrobino/mathindex.html>A. Iarrobino/a>, a hrefhttp://www.math.union.edu/people/faculty/khatamil.html>L. Khatami/a> and R. Zhao), Linear Algebra and its Applications 546 (2018), 210-260.br/>i>Equivariant degenerations of spherical modules: part II/i> a hrefhttp://dx.doi.org/10.1007/s10468-016-9614-7>article/a>, a hrefhttps://arxiv.org/abs/1505.07446>arXiv/a> (with a hrefhttp://math2.uoi.gr/index.php/en/2016-04-09-11-02-31/2016-03-09-11-02-32/2016-03-09-11-02-69>Stavros Papadakis/a>), Algebras and Representation Theory 19 (2016), 1135-1171.br/>i>The moduli scheme of affine spherical varieties with a free weight monoid/i> a hrefhttp://academic.oup.com//imrn/article/2016/15/4544/2451642/The-Moduli-Scheme-of-Affine-Spherical-Varieties?guestAccessKey6f9fcfc7-da56-4b78-8471-7caa757e8502>article/a>, a hrefhttps://arxiv.org/abs/1406.6041>arXiv/a> (with a hrefhttp://www1.mat.uniroma1.it/people/bravi/>Paolo Bravi/a>), International Mathematics Research Notices 2016 (2016), 4544-4587.br/>i>Equivariant degenerations of spherical modules for groups of type A/i> a hrefhttp://dx.doi.org/10.5802/aif.2735>article/a>, a hrefhttps://arxiv.org/abs/1008.0911>arXiv/a> (with a hrefhttp://math2.uoi.gr/index.php/en/2016-04-09-11-02-31/2016-03-09-11-02-32/2016-03-09-11-02-69>Stavros Papadakis/a>), Annales de lInstitut Fourier 62 (2012), 1765-1809 br/>i>Propositional systems, Hilbert lattices and generalized Hilbert spaces/i> a hrefhttps://doi.org/10.1016/B978-044452870-4/50033-9>chapter/a>, a hrefhttp://bvans.net/HLatt.pdf>pdf/a> (with a hrefhttp://www-lmpa.univ-littoral.fr/~stubbe/>Isar Stubbe/a>), Handbook of Quantum Logic and Quantum Structures (2007), 477-523, edited by D. Gabbay, D. Lehmann and K. Engesser, Elsevierbr/>i>Classification of smooth affine spherical varieties/i> a hrefhttp://dx.doi.org/10.1007/s00031-005-1116-3>article/a>, a hrefhttps://arxiv.org/abs/math/0505102>arXiv/a> (witha hrefhttps://www.math.fau.de/algebra-und-geometrie/friedrich-knop/>Friedrich Knop/a>), Transformation Groups 11 (2006), 495-516 br/>br/>a hrefhttp://www.ams.org/mathscinet/search/publications.html?pg1INDI&s1646175>Reviews of my papers on MathSciNet, including older ones/a>/p>p>b>Report/b>br/>i>Various interpretations of the root system(s) of a spherical variety/i> a hrefhttp://bvans.net/owr_1305.pdf>pdf/a>, extended abstract for Oberwolfach Mini-Workshop on Spherical Varieties and Automorphic Representations (12 May - 18 May 2013), Oberwolfach Reports 10 (2013), 1464-1467 a hrefhttp://www.mfo.de/document/1320a/OWR_2013_24.pdf>full report/a>/p>p>b>Seminars/b>br/>a hrefhttps://www.math.fau.de/veranstaltungskalender/emmy-noether/>Emmy Noether Seminar/a>/p>p>b>Conferences/b>br/>a hrefhttp://www1.mat.uniroma1.it/ricerca/convegni/2019/atg2019/>Algebraic transformation groups: the mathematical legacy of Domingo Luna/a>, Università La Sapienza, 28-30 October 2019br/>a hrefhttp://www.mi.uni-koeln.de/algebraicgroups2018/>Geometry and Representation Theory of Algebraic Groups/a>, Physikzentrum Bad Honnef, 5-9 March 2018/p>hr>A hometown quote:Dei Ingelse zèn zot. Ze schraive:street. Ze zegge: striet, en ze willen hemme: strôt. (De Standaard, 30 maart 2001)hr>I>Bart Van Steirteghem / 20 December 2022/I>
Port 443
HTTP/1.1 200 OKDate: Wed, 22 Jan 2025 11:04:33 GMTContent-Type: text/htmlContent-Length: 8074Connection: keep-aliveLast-Modified: Tue, 20 Dec 2022 17:18:09 GMTETag: 1f8a-5f0459eb926adAccept-Ranges: bytesVary: Accept-EncodingX-Backend-Server: 10.0.0.42:80 !DOCTYPE html PUBLIC -//W3C//DTD XHTML 1.0 Strict//EN http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd> html xmlnshttp://www.w3.org/1999/xhtml langen xml:langen>head>meta http-equivContent-Type contenttext/html; charsetutf-8 />title>Bart Van Steirteghem/title>style typetext/css>body{font-family:Tahoma, Geneva, sans-serif; font-size:.8em; }a:link { color: #000000; text-decoration:none;}a:visited { color: #000000;text-decoration:none; }a:hover { color: #000000; text-decoration:underline;}a:active { color: #000000; text-decoration:underline;}/style>/head>body>title>Bart Van Steirteghem/title>b>Bart Van Steirteghem/b>br/>a hrefhttps://www.math.fau.de/>Department Mathematik/a>br/>FAU Erlangen-Nürnbergbr/>Cauerstr. 11, D-91058 Erlangenbr/>Phone (+49) 9131 85-67015br/>Office 01.316br/>bartvs at math dot fau dot de!--table border0>tbody>tr>td width350 nowrap>b>Bart Van Steirteghem/b>/td>td width350 nowrap> /td>/tr>tr>td>Department of Mathematicsbr/>a hrefhttp://www.mec.cuny.edu/>Medgar Evers College/a>, a hrefhttp://www.cuny.edu/>CUNY/a>br/>1650 Bedford Ave, Brooklyn NY 11225, USAbr/>Phone (+1)718-270-6429br/>Office L-05-V in AB1br/>bartvs at mec dot cuny dot edu/td>td>a hrefhttp://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Doctoral-Programs/Mathematics/Faculty-Bios/Bart-Van-Steirteghem>Doctoral Faculty/a>br/>a hrefhttp://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Doctoral-Programs/Mathematics>Mathematics Program/a>br/>a hrefhttp://www.gc.cuny.edu/>The Graduate Center/a>, a hrefhttp://www.cuny.edu/>CUNY/a>br/>365 Fifth Avenue, New York, NY 10016, USA br/>Phone (+1)212-817-8557br/>Office 4302/td> td>Department Mathematik (LS Knop)br/>Lehrstuhl für Algebrabr/>FAU Erlangen-Nürnbergbr/>Cauerstr. 11, D-91058 Erlangenbr/>Phone (+49) 9131 85-67022br/>Office 01.322br/>bartvs at math dot fau dot de/tr>/tbody>/table>p>b>Bart Van Steirteghem/b>br/>Department of Mathematicsbr/>a hrefhttp://www.mec.cuny.edu/>Medgar Evers College/a>, a hrefhttp://www.cuny.edu/>City University of New York/a>br/>1650 Bedford Ave, Brooklyn NY 11225, USAbr/>Phone (+1)718-270-6429br/>Office L-05-V in AB1br/>bartvs at mec dot cuny dot edu/p>-->p>a hrefhttp://bvans.net/cv.html>Brief CV/a>/p>!-- p>b>Current teaching/b>br/>Mathematik für Physikstudierende 3 (Erlangen)-->p>b>Papers/b>br/>i>Quasi-Hamiltonian model spaces/I> a hrefhttps://arxiv.org/abs/1901.00634>arXiv/a> (with Kay Paulus)br/>i>Multiplicity free U(2)-actions and triangles/I> a hrefhttps://arxiv.org/abs/2208.02099>arXiv/a> (with a hrefhttps://www.uni-marburg.de/de/fb12/kooperationen/diffgeoana/prof-dr-oliver-goertsches>Oliver Goertsches/a> and Nikolas Wardenski)br/>i>Momentum polytopes of projective spherical varieties and related Kähler geometry/I> a hrefhttps://doi.org/10.1007/s00029-020-0549-9>article/a>, a hrefhttps://arxiv.org/abs/1809.08171>arXiv/a>, a hrefhttps://rdcu.be/b3rfl>view-only/a> (with a hrefhttps://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/transformationsgruppen/cupit.html>Stéphanie Cupit-Foutou/a> and a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Selecta Mathematica, New Series 26 (2020), 27.br/>i>Combinatorial characterization of the weight monoids of smooth affine spherical varieties/i> a hrefhttps://doi.org/10.1090/tran/7785 >article/a>, a hrefhttps://arxiv.org/abs/1510.04266>arXiv/a> (with a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Transactions of the American Mathematical Society 372 (2019), 2875-2919.br/>i>On some families of smooth affine spherical varieties of full rank/i> a hrefhttps://doi.org/10.1007/s10114-018-7244-1>article/a>, a hrefhttps://arxiv.org/abs/1705.05357>arXiv/a> (with Kay Paulus and a hrefhttp://www.mat.uniroma1.it/persone/pezzini>Guido Pezzini/a>), Acta Mathematica Sinica, English Series 34 (2018), 563-596.br/>i>Nilpotent matrices having a given Jordan type as maximum commuting nilpotent orbit/i> a href https://doi.org/10.1016/j.laa.2018.02.007>article/a>, a hrefhttps://arxiv.org/abs/1409.2192>arXiv/a> (with a hrefhttp://www.northeastern.edu/iarrobino/mathindex.html>A. Iarrobino/a>, a hrefhttp://www.math.union.edu/people/faculty/khatamil.html>L. Khatami/a> and R. Zhao), Linear Algebra and its Applications 546 (2018), 210-260.br/>i>Equivariant degenerations of spherical modules: part II/i> a hrefhttp://dx.doi.org/10.1007/s10468-016-9614-7>article/a>, a hrefhttps://arxiv.org/abs/1505.07446>arXiv/a> (with a hrefhttp://math2.uoi.gr/index.php/en/2016-04-09-11-02-31/2016-03-09-11-02-32/2016-03-09-11-02-69>Stavros Papadakis/a>), Algebras and Representation Theory 19 (2016), 1135-1171.br/>i>The moduli scheme of affine spherical varieties with a free weight monoid/i> a hrefhttp://academic.oup.com//imrn/article/2016/15/4544/2451642/The-Moduli-Scheme-of-Affine-Spherical-Varieties?guestAccessKey6f9fcfc7-da56-4b78-8471-7caa757e8502>article/a>, a hrefhttps://arxiv.org/abs/1406.6041>arXiv/a> (with a hrefhttp://www1.mat.uniroma1.it/people/bravi/>Paolo Bravi/a>), International Mathematics Research Notices 2016 (2016), 4544-4587.br/>i>Equivariant degenerations of spherical modules for groups of type A/i> a hrefhttp://dx.doi.org/10.5802/aif.2735>article/a>, a hrefhttps://arxiv.org/abs/1008.0911>arXiv/a> (with a hrefhttp://math2.uoi.gr/index.php/en/2016-04-09-11-02-31/2016-03-09-11-02-32/2016-03-09-11-02-69>Stavros Papadakis/a>), Annales de lInstitut Fourier 62 (2012), 1765-1809 br/>i>Propositional systems, Hilbert lattices and generalized Hilbert spaces/i> a hrefhttps://doi.org/10.1016/B978-044452870-4/50033-9>chapter/a>, a hrefhttp://bvans.net/HLatt.pdf>pdf/a> (with a hrefhttp://www-lmpa.univ-littoral.fr/~stubbe/>Isar Stubbe/a>), Handbook of Quantum Logic and Quantum Structures (2007), 477-523, edited by D. Gabbay, D. Lehmann and K. Engesser, Elsevierbr/>i>Classification of smooth affine spherical varieties/i> a hrefhttp://dx.doi.org/10.1007/s00031-005-1116-3>article/a>, a hrefhttps://arxiv.org/abs/math/0505102>arXiv/a> (witha hrefhttps://www.math.fau.de/algebra-und-geometrie/friedrich-knop/>Friedrich Knop/a>), Transformation Groups 11 (2006), 495-516 br/>br/>a hrefhttp://www.ams.org/mathscinet/search/publications.html?pg1INDI&s1646175>Reviews of my papers on MathSciNet, including older ones/a>/p>p>b>Report/b>br/>i>Various interpretations of the root system(s) of a spherical variety/i> a hrefhttp://bvans.net/owr_1305.pdf>pdf/a>, extended abstract for Oberwolfach Mini-Workshop on Spherical Varieties and Automorphic Representations (12 May - 18 May 2013), Oberwolfach Reports 10 (2013), 1464-1467 a hrefhttp://www.mfo.de/document/1320a/OWR_2013_24.pdf>full report/a>/p>p>b>Seminars/b>br/>a hrefhttps://www.math.fau.de/veranstaltungskalender/emmy-noether/>Emmy Noether Seminar/a>/p>p>b>Conferences/b>br/>a hrefhttp://www1.mat.uniroma1.it/ricerca/convegni/2019/atg2019/>Algebraic transformation groups: the mathematical legacy of Domingo Luna/a>, Università La Sapienza, 28-30 October 2019br/>a hrefhttp://www.mi.uni-koeln.de/algebraicgroups2018/>Geometry and Representation Theory of Algebraic Groups/a>, Physikzentrum Bad Honnef, 5-9 March 2018/p>hr>A hometown quote:Dei Ingelse zèn zot. Ze schraive:street. Ze zegge: striet, en ze willen hemme: strôt. (De Standaard, 30 maart 2001)hr>I>Bart Van Steirteghem / 20 December 2022/I>
View on OTX
|
View on ThreatMiner
Please enable JavaScript to view the
comments powered by Disqus.
Data with thanks to
AlienVault OTX
,
VirusTotal
,
Malwr
and
others
. [
Sitemap
]