Help
RSS
API
Feed
Maltego
Contact
Domain > 15745.bearcmu.com
×
More information on this domain is in
AlienVault OTX
Is this malicious?
Yes
No
DNS Resolutions
Date
IP Address
2024-10-25
104.21.78.180
(
ClassC
)
2025-05-24
104.21.112.1
(
ClassC
)
2025-07-31
104.21.16.1
(
ClassC
)
Port 80
HTTP/1.1 301 Moved PermanentlyDate: Sat, 24 May 2025 22:37:35 GMTContent-Type: text/htmlContent-Length: 167Connection: keep-aliveCache-Control: max-age3600Expires: Sat, 24 May 2025 23:37:35 GMTLocatio html>head>title>301 Moved Permanently/title>/head>body>center>h1>301 Moved Permanently/h1>/center>hr>center>cloudflare/center>/body>/html>
Port 443
HTTP/1.1 200 OKDate: Sat, 24 May 2025 22:37:35 GMTContent-Type: text/html; charsetutf-8Transfer-Encoding: chunkedConnection: keep-aliveNel: {report_to:cf-nel,success_fraction:0.0,max_age:604800}Server !DOCTYPE html>html>head> title>Automatic Generation of Efficient Sparse Tensor Format Conversion Routines/title> meta charsetUTF-8 /> meta namegenerator contentTeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/) /> link relstylesheet typetext/css hrefmain.css /> !-- for beautifying --> link relstylesheet typetext/css hrefsite.css /> script typetext/x-mathjax-config> MathJax.Hub.Config({ extensions: tex2jax.js, jax: input/TeX, output/HTML-CSS, tex2jax: { inlineMath: $,$, \(,\) , displayMath: $$,$$, \,\ , processEscapes: true }, HTML-CSS: { availableFonts: TeX } }); /script> script typetext/javascript srchttps://cdn.mathjax.org/mathjax/latest/MathJax.js?configTeX-AMS-MML_HTMLorMML>/script>/head>body> div classmaketitle> h2 classtitleHead>Automatic Generation of Efficient Sparse Tensor Format Conversion Routines/h2> div classauthor>span classcmr-12>Roland Liu, Bear Xiong/span>/div>br /> div classdate>span classcmr-12>December 2024/span>/div> /div> h3 classsectionHead>span classtitlemark>1 /span> a idx1-10001>/a>Introduction/h3> p> /p> h4 classsubsectionHead>span classtitlemark>1.1 /span> a idx1-20001.1>/a>Background/h4> p>Sparse Tensors are n-dimensional vectors with the property of having a significant portion of its elements being zero. Sparse matrix algorithms play a crucial role in modern artificial intelligence and deep learning systems, which is built on the top of linear algebra algorithms. In many scenarios, less than 0.01% of a sparse tensor’s entries may be non-zero. As a result, it is more memory efficient to record ONLY the locations and values of the non-zero entries. One real-life example lies in neural network pruning, where a large portion of model weights can be zeroed out without accuracy loss. To fully realize the benefits of neural network pruning, efficient sparse matrix algorithms are essential. /p> p> There are various methods of representing Sparse Tensors: Compressed Sparse
View on OTX
|
View on ThreatMiner
Please enable JavaScript to view the
comments powered by Disqus.
Data with thanks to
AlienVault OTX
,
VirusTotal
,
Malwr
and
others
. [
Sitemap
]